
MLS 1

Potential Show-Stoppers for
Transactional Synchronization

Panel session, PPoPP’07, March 2007

Michael L. Scott U Rochester
Ali-Reza Adl-Tabatabai Intel Corp
David Dice Sun Microsystems
Christos Kozyrakis Stanford U
Christoph von Praun IBM Research

MLS 2

Uniprocessor Limits

 Heat wall
 Limited ILP

http://www.tomshardware.com/2005/11/21

MLS 3

Multicore is here to stay

 Dual-processor laptops now
 Quad-core desktops
 8-core servers
 Lots more to come
 Vendors waiting for apps

MLS 4

The Coming Crisis

 Parallelism common in high-end scientific computing
» done by experts, at great expense

 Also common in Internet servers
» “embarrassingly parallel”

 Has to migrate into the
mainstream
» programmers not up

to the task

http://tfp.killbots.com/?p=wall/@wall&name=&pag=3

MLS 5

What TM is

 ﻿A way to simplify some forms of synchronization
— an alternative to mutual exclusion locks

 A way to improve scalability with respect to
coarse-grain locks

MLS 6

What TM is not

 A way to make parallel programming easy
 A general-purpose synchronization mechanism
 A way to get free concurrency (or even scalability)

MLS 7

﻿The basic idea is simple

 ﻿Programmer identifies atomic sections
 System serializes them, runs in parallel if it can

MLS 8

Some details are not simple

 ﻿I/O and other irreversible operations
 Open nesting: causality loops, compensating actions,

high-level concurrency control
 Weak isolation, privatization
 Early release
 Condition synchronization (retry, ...)
 Alternative paths (or else, ...)
 Customizable backoff or retry policies
 Synchronizers or other cross-transaction communication
 Priorities
 Segregation of transactional and nontransactional objects or

types, for the benefit of SW implementations

MLS 9

Not to mention

 ﻿Parallelization / identification of speculative tasks
 Ordering among transactions
 Performance tuning

» tools to find conflicts
» incentive to subdivide to avoid them

 When does this get uglier than locks?
(answer: very quickly)

 danger of overselling

MLS 10

Some personal experience

 Delaunay mesh application
» 2500 lines of C++
» barrier-separated private and

transactional phases
 RSTM library-based STM

» ﻿transactional types inherit from
transactional base class

» access through smart pointers

 Turned out to be a lot harder than I expected

MLS 11

A compiler would have helped
 Hide accessors, validators
 Generate transactional and non-transactional

versions of code as needed
 Let this be a smart pointer
 Leave immutable fields in place, for safe private

access; update read-only pointers as needed;
support safe break/return

 Catch loop-carried private value, potentially stale
private pointer

 Elide redundant checks

 All of this is straightforward

MLS 12

The Bottom Line

 Keep it simple!
 Don’t expect too much
 Plan on language integration

and compiler support

 Do not oversell !

www.cs.rochester.edu/meetings/TRANSACT07/

The Second ACM SIGPLAN
Workshop on Transactional Computing

To be held in conjunction with PODC 2007
Portland, Oregon, August 16, 2007

Submission deadline: April 15, 2007

